
798 M O D E L  F O R  S H O R T - R A N G E - O R D E R E D  A L L O Y  S T R U C T U R E S .  I 

average volume of a microdomain. The inverse of 
equation (A5) becomes 

e~(~=Vo ~ ~-~i iS-exp(2rciq .  R~). (A6) 

Up to equation (A5), e~(~ is defined as a function con- 
centrated only around q=0 .  In equation (A6), e~(q) is 
given as a periodic function in the fundamental lattice, 
as the e~ parameters are defined only at the direct lattice 
points. If e~(~ is sufficiently concentrated in the vici- 
nity of a reciprocal-lattice point, the distribution just 
around q = 0 may be regarded as e~(~ given in equation 
(A5). Thus, the mean shape function is obtained from 
the experimental intensity data using equations (A3) 
and (A6). At this stage, there is still uncertainty in the 
value of Nd in (A6). The following consideration will 
help determine it. 

The function El(r) may be regarded as a sort of 
order parameter according to the definition in equa- 
tion (6). If each site within a microdomain is occupied 
by the correct atom for the ordered structure, El(r) 
becomes unity, as was given in equation (6), and if the 
degree of order decreases with increasing distance from 
the centre of the microdomain, it changes from 1 to 0 
with increasing distance Irl. According to this consider- 
ation, the following equation holds: 

E~(r=0)= I el(q)dq= 1. (A7) 

Here, lel(q)l can be obtained directly from the experi- 
mental data using equation (A6), but el(q) cannot. In 
the non-correlation model considered here, however, 
e~Z(q) may be approximated by a smooth function such 

as a Cauchy, Gaussian, exponential function, etc., and 
then el(q) may be a smooth positive function. In most 
practical cases, el(q) in equation (A7) may be safely 
replaced by Icl(q)l. Using I~l(q)l obtained from equa- 
tions (A6) and (A7), Nd is evaluated. 

It is inferred from equation (A5a) that E~(r)re- 
presents the distribution of size and shape of micro- 
domains. 
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The diffraction properties of curved silicon crystals, with curvature radii between ~ and 25 m obtained 
by microscopic techniques, were investigated by means of a neutron diffractometer. The ratio of neutron 
reflectivity between plane and curved silicon crystals was measured as a function of the neutron wave- 
length using different reflecting planes in both Bragg and Laue cases in symmetrical and asymmetrical 
conditions. The experimental results were interpreted with the results of theoretical investigations on the 
dynamical theory of diffraction applied to the curved-crystal case. The implications of this work on 
neutron monochromator design are briefly discussed. 

1. Introduction 

The problem of neutron diffraction by curved crystals 
has been treated theoretically (Klar & Rustichelli, 
1973) by an extension of the dynamical theory for X-ray 

diffraction (Taupin, 1964a, b). The aim of this work 
was to give an experimental contribution in the same 
field of the physics of neutron diffraction by curved 
crystals. The ratio of neutron reflectivities between 
perfect plane crystals and curved crystals with the same 
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characteristics has been measured at different wave- 
lengths using varying reflecting planes. As a conse- 
quence, either the incident Bragg angle or the reflexion 
asymmetry was changed during the experiment. Most 
of the measurements were done in the Bragg reflexion 
condition and few of them in the Laue reflexion 
condition. The experimental data were compared with 
theoretical values expected from the dynamical dif- 
fraction theory for ideally curved crystals mentioned 
above. Knowledge of the neutron diffraction by curved 
crystals finds an interesting application in the design 
of new types of neutron monochromators as, for in- 
stance, crystals curved by microscopic techniques 
(Rustichelli, 1968), by temperature gradient (Alefeld, 
1969), or by other techniques (Egert & Dachs, 1970), 
crystals grown with a gradient in the lattice spacing 
(Rustichelli, 1972), and furthermore in the design of 
composite neutron monochromator systems (Boeuf & 
Rustichelli, 1973). 

2. Experimental technique 

(a) The silicon crystals 
The perfect silicon crystals were crystalline disks, 

0.5 and 1 mm thick respectively, and 40 mm in diam- 
eter. The curved silicon crystals were obtained from 
perfect crystalline disks of the same size, chemically 
bent to different curvatures (see Table 1). The curvature 
was obtained by high-temperature reaction of silicon 
with a gaseous mixture of N2,SiH4 and NH3 which 
produces a SiaN4 film on the silicon. Owing to the fact 
that the Si3N4 film and the silicon have different thermal 
expansion coefficients, a curvature is obtained when 
the crystal is cooled down. This curvature depends on 
the thickness of the original silicon disk and on the 
thickness of the Si3N4 film. Disks of different cur- 
vatures have been produced by varying the two par- 
ameters. The treatment was done at the L.E.T.I. 
Laboratories (Grenoble). More details on the procedure 
used and on the control carried out during the fabri- 
cation can be found in Antonini, Corchia, Nicotera & 
Rustichelli (1972). 
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Fig. 1. Sketch of the geometrical configurat ion of the experi- 
mental  set-up. 

Table 1. Characteristics of the silicon crystals used 

Thickness of  Radius of 
Crystal Thickness Si3N4 layer curvature 

identification (ram) (A) (m) 
Ao 0"5 0 c~ 
Bo 0"5 5000 35 
Co 0.5 10000 20 
At 1 0 c~ 
BI 1 5000 90 
C1 1 10000 55 

In the silicon crystals used, the surface was cut paral- 
lel to the (111) reflecting plane. The diffraction from the 
(111) reflecting plane at different Bragg angles was 
first investigated in Bragg symmetrical conditions. Then 
the diffraction from the (551) reflecting plane, which 
forms an angle ~0=27 ° with the face of the crystal, 
was studied at different 0 angles using Bragg asym- 
metrical conditions. Finally, diffraction from the (115) 
reflecting plane, which forms an angle ~0=39 ° with 
the face of the crystal, was investigated at different 0 
angles in Bragg and Laue asymmetrical conditions. 

(b) Neutron diffraction measurements 
The neutron diffraction experiments were carried 

out at the T2 tangential channel of the M61usine reactor 
of CEN Grenoble. A well collimated polychromatic 
beam of about 10 mm height and 1 mm width, having 
a horizontal divergence of about 16', was impinging 
on the tested silicon crystals as shown in Fig. 1. The 
diffracted neutron intensity was detected by a BF3 
counter positioned at a certain 20 Bragg angle depend- 
ing on the chosen wavelength. An optimization of the 
position of the tested crystal was made and all the diffrac- 
ted intensity was recorded with an almost infinite di- 
vergence between crystal and counter. In this way, 
for each 20 angle, i.e., for a given neutron wavelength 
and for a given reflecting plane, the ratio of the in- 
tensity diffracted by the curved crystal to the intensity 
diffracted by the non-curved crystal of the same di- 
mension was recorded. By this technique, only the effect 
of the different curvatures is analysed at a given neu- 
tron wavelength for a given reflecting plane and for a 
given diffraction asymmetry. 

3. Neutron diffraction results 

(a) Directly recorded data 
The results of the different measurements are pre- 

sented in Figs. 2-6. I¢ is the neutron intensity measured 
with the curved silicon crystal and Ip is the neutron 
intensity measured with a non-curved silicon crystal 
of the same size under the same conditions:the measured 
ratio is then given by A~ =Ic/Ip and is reported in the 
figures as a function of the wavelength of the dif- 
fracted neutrons. In Fig. 2 the results obtained in 
symmetrical Bragg conditions for the (111) reflecting 
plane and for a 0.5 mm thick crystal are reported. 
Fig. 3 gives the ratio A 7, obtained in the same geometri- 

A C 30A - 8* 
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cal conditions but for a silicon crystal 1 mm thick. 
From this curve it can be seen that at a wavelength of 
about 1/k the neutron intensity reflected by the curved 
silicon crystal is approximately six times greater than 
the intensity reflected by the non-curved silicon crystal. 
Figs. 4 and 5 concern measurements made under asym- 
metrical Bragg conditions using as reflecting plane the 
(551) silicon plane for the 0.5 mm thick and the 1 mm 
thick crystals respectively. Finally, Fig. 6 reports the 
neutron intensity ratio Ag obtained by diffraction from 
the silicon (115) plane in asymmetrical Laue conditions 
and in the asymmetrical Bragg condition for a 1 mm 
thick crystal. One can see that the behaviour of the 
curved crystals is quite similar in the two geometrical 
conditions when the incident beam direction approa- 
ches very closely the surface of the crystal, i.e. when 2 
approaches the limiting value of 1.3/k which separates 
the Bragg and Laue conditions. 

(b) Derivation of absolute reflecting powers for the 
curved crystals 

The results presented in Figs. 2 to 6 can be utilized 
to calculate the integral reflecting power as a function 
of the neutron wavelength for curved crystals. If  one 
chooses the neutron wavelength as independent vari- 
able, the integral reflecting power is defined as follows: 

~-o-o. d2 (1) 

where Pn is the neutron diffracted power and P0 is the 
incident neutron power. The measured quantity A~,, 
which is the ratio of the diffracted neutron intensity 
of a curved crystal to that of a non-curved crystal, also 
represents the ratio of the reflecting power of the 
curved crystal to that of the non-curved crystal 

A~ , -  I ,  - R~ (2) 

where R~ is the integral reflecting power of the curved 
crystal, RXp is the integral reflecting power of the non- 
curved crystal and ~ is a correction factor taking into 
account the fact that the non-curved crystals (A0 and 
AO used are not quite perfect. The degree of imper- 
fection of such crystals has been measured previously, 
and ~ is deduced from the measurements made at 
2=1 .2  A and reported in Table 1 of Antonini et 
aL (1972), supposing to a first approximation that 
remains constant in the range of wavelength investi- 
gated. The value of R~, integral reflecting power of a 
perfect crystal, can be calculated from the following 
formula (Zachariasen, 1967) 

R~-  4daFn sin 0 (3) 

Vc " ]//70 

7n 
in the Bragg condition, and 

1 R~(Bragg), R~(Laue) = ~- (4) 
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Fig. 2. The ratio between the neut ron  intensity diffracted by 
the curved and the non-curved crystals as a function of the 
wavelength for the (111) plane and the 0"5 m m  thick crystal. 
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Fig. 3. The ratio between the neutron intensity diffracted by 
the curved and the non-curved crystals as a funct ion of  the 
wavelength for the (111) plane and the 1 m m  thick crystal. 
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Fig. 4. The ratio between the neut ron  intensity diffracted by 
the curved and the non-curved crystals as a function of  the 
wavelength for the (55t) plane and the 0.5 mm thick crystal. 
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where d is the lattice spacing of  the plane considered, 
Fn is the structure factor, Fc is the volume of the ele- 
mentary  cell, 0 is the Bragg angle, Y0 and 7n are the 
direction cosines of the incident and diffracted waves 
respectively. In Table 2, the values of  R~ x deduced 
from experimental  results using equations (2)-(4) are 
reported for the different wavelengths and for the dif- 
ferent reflecting planes investigated. 

4. Interpretation of experimental results 

(a) Theoretical considerations on crystal curvature 

In order to interpret the data, further elaborat ion is 
needed based on the following considerations. F rom 
elementary geometrical observations, it can be seen 
that  the curvature radius Q, the thickness At and the 
angular  disorientation along the incident beam (be- 
tween the two faces of  the crystal) A0, are related by 
the equation 

At 
dO= - - .  cot c~, (5) 

0 

I c  
¥ 

8 

T 6 

Si (551) 

-To (C1) 
0 

Ip(Al) 

Ic (B1) 
Ip(Al) 

1.2 

~- 9, (A) 
1.4 

Fig. 5. The ratio between the neutron intensity diffracted by 
the curved and the non-curved crystals as a function of the 
wavelength for the (551) plane and the 1 mm thick crystal. 

where ~ is the angle between the incident beam and the 
crystal surface. In Klar  & Rustichelli  (1973) a quant i ty  
c, which is related to the curvature of  the crystal, was 
defined as 

dy 
c -  dA (6) 

where y is the deviation from the Bragg condit ion ex- 
pressed in units equal to the halfwidth of  the Darwin 
curve, and A is the total thickness of  the crystal ex- 
pressed in units equal to one ha l f  of  the extinction 
length. Taking into account the relation between At 
and AO through the variables A and y from (5) and 
(6), one obtains for the general asymmetrical  case, in 
analogy with the symetrical case treated in Appendix 
A of Klar  & Rustichelli (1973): 

1 dt dy 
Q= c " d---A- " dO " cot ~ .  (7) 

si (115) 
zc 
Tp 

15 Laue Condition Bragg Condition 
I 

"~} , I e (C l )  

Ip(A1) 

to ., • rO(A~ J 

j ' S '  " . 

0.5 1.5 
~ (2) 

Fig. 6. The ratio between the neutron intensity diffracted by 
the curved and the non-curved crystals as a function of the 
wavelength for the (115) plane and the 1 mm thick crystal. 
For 2 < 1.3 /~ one obtains the Laue condition and for 2 > 
1"3 A one obtains the Bragg condition. 

Si(l l l)  
Re z X 1012 

2 (A) Bo Co BI Cl 
0"54 3"53 - 4"65 6"82 
0"82 4"96 - 4"61 7"16 
0"98 5"32 4-81 4"49 6"82 
1"2 5.88 6"50 4"46 6"86 
1"62 6"41 7"39 4"19 6"21 
2"15 6"21 6"77 5"52 8"69 

Table 2. The reflectivity R~ as a function o f  2 

si(551) 
R~ x 10 t2 

2 (A) Bo Co B1 C1 
0"79 0"463 0"549 1"07 1"215 
0"91 0"353 0"324  0"552  0"743 
1-02 0"282 0"273 0"373  0"484 
1"21 0"243 0"235  0 - 2 1 7  0.320 
1"37 0"154 0"163 0"126  0.183 

;t (A) 
0.71 
0.88 
1.04 
1.19 
1.34 
1.47 
1.59 

si(115) 
R~ × 1012 

BI 
0"107 
0"133 
0"148 
0"160 
0.244 
0.267 
0"209 

c1 
0"141 
0"164 
0"202 

0"350 
0"305 
0"289 
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By using the following relation (Klar & Rustichelli, 
1973) between the different variables, 

dt 
dA --text (8) 

dy 1 

dO dO(Darwin) ' 
(9) 

equation (7) becomes 

1 tex t 
c o t ~ .  (10) - -  , , 

Q= e d0(Darwin) 

The curvature corresponding to a value e =  1 presents 
particular features. In fact, in this case it can be seen 
from equation (6) that there is an angular variation in 
the inclination of lattice plane dy  = 2, i.e., equal to the 
width of the Darwin curve for a depth variation inside 
the crystal of A = 2, i.e., for an extinction length. This 
can also be seen by comparing equations (10) and (6). 
In the ease of e equal to one, a model can be imagined 
according to which the curved crystal is decomposed in 
several layers, each having a thickness equal to the 
extinction length and disoriented relative to each other 
by an angle equal to the width of the Darwin curve. 
It is expected from this model that each layer gives 
rise (in the diffraction pattern) to a contribution equal 
to a Darwin curve and adjacent layers give rise to 
adjacent Darwin curves, as explained in Klar & Rusti- 
chelli (1973). This case will be analysed better below. 
The condition c=  1 corresponds to the optimum con- 
dition when the curved crystal is used as neutron 
monochromator.  In fact, in this case one obtains the 
maximum diffracted intensity for a given energy reso- 
lution. The curvature radius corresponding to c = l  
will then be called Qopt. If c:/: 1, one obtains from 
equation (10) 

1 
LO = -C ~opt. (1 1) 

If c < 1, the height of the resulting Darwin curves will 
be one, as before, but the total width giving the integral 
reflectivity will be less than the total width corres- 
ponding to c=  1 (Klar & Rustichelli, 1973). On the 
other hand, the total width of the diffraction pattern 
becomes larger than in the case c =  1 but one has no 
more total reflexion because, at a fixed lattice spacing 
value, there are not enough lattice planes to give 

complete primary extinction (Klar & Rustichelli, 1973). 
Then the optimal curvature radius and the c values 
can be calculated from the following expressions, which 
are valid in the more general asymmetric case for the 
extinction length and the Darwin curve width, 

2 Vc[sin a .  sin fill/2 
text= 2 . F H  (12) 

d 0 ( D a r w i n ) -  4FNd2 [ sin/Y],,2, tg 0 (13) 
Vdt t sin ~ j 

where c~ and fl are the angles between the surface of 
the crystal and the incident beam and the reflected 
beam respectively, and 0 the Bragg angle. From these 
two equations one obtains 

1 ] 
cos ~ .  cot 0 (14) = _ _  . 

O c 2 F 2 d  z 2 

QZ l U: 

0.5 

T 

Si  (1 l l )  

t , 

o C 1 

• B 1 

2 3 
dy 
dA 

Fig. 7. The integrated reflecting power normalized by the 
kinematical reflecting power as a function of the crystal 
curvature for the (111) plane and the 1 mm thick crystals. 

Table 3. The quantity c as a function o f  the neutron wavelength 

Si( l l )  
C 

,~ (A) B0 Co & C~ ~ (A) Bo 
0.54 4.22 7.39 1.64 2.69 0.79 13.4 
0.82 1.86 3.26 0.72 1.19 0.91 9.6 
0.98 1.29 2.25 0.50 0.82 1.02 6.98 
1.2 0.86 1.5 0.33 0.54 1.21 3.90 
1.62 0.45 0-79 0.17 0.29 1.37 2.17 
2.15 0.24 0.42 0.09 0.15 

Si(551) Si(115) 
C C 

Co BI 6"1 2 (A) BI (71 
• 23"5 5"22 8"54 0"71 1"94 3"18 

16"7 3"72 6"09 0"88 1"05 1"72 
12"3 2"73 4"46 1-04 0"59 0"97 
6"85 1"52 2"49 1"19 0"33 0-54 
3"8 0"84 1"38 1"34 0"18 0"29 

1"47 0.08 0-13 
1"59 0"02 0-03 
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which in the case of c=  1 gives ~)opt. The optimal cur- 
vature radius depends for a given crystal on the re- 
flecting plane, the neutron wavelength and the asym- 
metry of the diffraction. In the present case, the cur- 
vature radii of the crystals are constant but owing to 
the fact that Qopt depends on the wavelength, c will also 
depend on the wavelength, according to equation (11). 
From the values of the real curvature of the crystals 

1 

I 05 / 

Si (111) 

o Co 

• Bo 

}{} 

1 2 3 
dy 

C =  
dA 

Fig. 8. The integrated reflecting power normalized by the 
kinematical reflecting power as a function of the crystal 
curvature for the (111) plane and the 0"5 mm thick crystals. 

I 

0.5 

T 

Si (S 5 I )  

{{ 

o Cf 

• B I 

I 2 3 ~ 5 6 

dY c = ' - ~  

Fig. 9. The integrated reflecting power normalized by the 
kinematical reflecting power as a function of the crystal 
curvature for the (551) plane and the 1 mm thick crystals. 

and from equation (14), one obtains the value of c as a 
function of the wavelength (see Table 3). Table 3 
permits us to see immediately for a given diffraction 
condition whether the crystal considered is curved too 
much or too little as compared to the optimal condition 
at which it should be used as neutron monochromator.  
For a given reflecting plane, it is possible in this way 
to associate a value of c with each experimental point, 
and therefore to draw a curve giving R~ as a function 
of c, where R~ represents the integral reflecting power 
in y units (Zachariasen, 1967). 

It has been shown (Taupin, 1964a, b) that for a 
fixed wavelength, when a crystal is progressively curved, 
the reflecting power R~ starts from the dynamical values 
for c = 0  and increases asymptotically until it reaches 
the kinematical reflecting power R~(kine). On the other 
hand, in our case the value of the curvature radius ~) 
is fixed but the neutron wavelength changes. However, 
one expects that in this case also R~ will reach the 
asymptotic value. But in our asymmetrical reflexion 
condition, the kinematical reflecting power depends 
on the neutron wavelength, i.e., on the quantity c. 
In order to eliminate this wavelength dependence, the 
values of R~ deduced from the experimental measure- 
ments have been normalized with the kinematical 
reflecting power R~(kine) calculated for each c value 
by the following formula: 

R~(k ine) -  2ndFM sin 0 (15) 
Vc l/(sin ~ .  sin fl) 

where t is the real thickness of the crystal. The trans- 
formation of the initial data in the form of R~/R~(kine) 
as a function of c, for a given reflecting plane, allows 
an easy physical interpretation. 

(b) Discussion 
One expects that the ratio R~/RYn(kine) tends to- 

ward one when c tends to infinity. On the other hand, for 
c=0 ,  the above ratio is clearly given by 
R~(dyn)/RYn(kine) by supposing the crystal to be per- 
fect. In addition to the cases c = 0 and c = co, the case 
c =  1 is particularly interesting and needs a detailed 
discussion. Before treating this latter case, it is worth- 
while to remember that it was observed (Antonini et 
al., 1972) that 

R~(kine) = R~(dyn).  A .  (16) 

For a crystal having a thickness A =2,  equal to the 
extinction length, R~(kine) is then equal to twice 
R~(dyn). 

From the previously mentioned model of the curved 
crystal in the case c = 1 according to which the crystal 
itself was decomposed into n perfect crystal layers, where 
n is the ratio of the thickness of the crystal to the 
extinction length, one expects that 

R~ = n .  R~(dyn).  (17) 

The condition proceeds immediately from the obser- 
vation that for c =  1, the layers give rise to adjacent 
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Darwin curves and that R~(dyn) is just the integral 
reflecting power of a Darwin curve in which the tails 
are included. From this model and from equation (16), 
it is expected that for c = 1, the value R~ is equal to one 
half of the kinematical value, which corresponds indeed 
to c = oo. This is valid when the wavelength is fixed and 
the curvature of the crystal is changed or when, as in 
our case, the curvature is fixed but the wavelength is 31 
changed. Therefore for c= 1, we expect in each case ~, I that the ratio R~/R~(kine) = 0.5. Actually 0.5 represents 
a maximum value for this ratio, as will be explained ~ .~- 
below. Indeed, in the model developed by Klar & ~ ~ 
Rustichelli (1973) and adapted to the crystal with a ~:~:~ 
gradient of lattice parameter (Rustichelli, 1972) for 
c = 1, the crystal is decomposed into n elementary layers o.5 
each one reflecting a Darwin curve which is supposed 
to be a rectangle. In such a model, one neglects, 
therefore, the tails of the Darwin curves, which is / 
equivalent to replacing in equation (2) the value of 
R~(dyn), which is given by 

with 

-~0 (y)" dy 

f +1 Pn 
R~(dyn)RECr. = (y) dy 

- -  1 - - ~ 0  " " 

(19) 

(20) 

The ratio between integrals (20) and (19) is equal to 
2/n (Zachariasen, 1967). With this last approximation 
for c=  1, it is expected that R~/Rrn(kine)= 1/n for all 
the reflecting planes considered. In conclusion, for 
the asymptotic value c = oo and for c = 1, the theoretical 
values of the ratio Rrn/R~(kine) are expected to be 
independent of the neutron wavelength used, of the 
reflecting plane considered and of the thickness of 
the crystal, as long as this is bigger than one extinction 
length. Taking into account the previous considera- 
tions for c = 1, the ratio R~/R~(kine) is expected to lie 
between an upper value of 0-5 and a lower value of 1/n. 
However, for c = 0  and therefore for the values of c 
included between 0 and 1, the ratio R~/R~(kine) 
depends on the reflecting plane considered and for a 
given reflecting plane on the crystal thickness (Zacha- 
riasen, 1967). Fig. 7 shows the ratio RYn/R~(kine) as 
a function of c for the 1 mm thick crystal with the 
(111) plane as reflecting plane in symmetrical Bragg 
conditions. Fig. 8 shows the ratio R~/R'n(kine) (c) in 
the same diffraction condition for the 0.5 mm thick 
crystals. Figs. 9 and 10 give the ratio Rrn/R~(kine) (c) 
for the (551) reflecting plane in asymmetrical Bragg 
conditions for 1 mm thick and the 0.5 mm thick 
crystals respectively. In Fig. 11, the same quantity is 
reported for the 1 mm thick crystals and for the 
(115) reflecting plane in asymmetrical Bragg conditions. 
Fig. 12 shows the ratio R~/R~(kine) (c) for the 1 mm 
thick crystals and for the (115) reflecting plane in 
asymmetrical Laue conditions. In each of these figures, 
two straight lines are drawn which join the theoretical 

value of RYn/R~(kine) expected at c = 0  and given by 
equation (3) and the upper and lower values of ½ and 
1/n respectively, expected at c= 1 for the same function. 
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Fig. 10. The integrated reflecting power normalized by the 
kinematical reflecting power as a function of the crystal 
curvature for the (551) plane and the 0"5 mm thick crystals. 
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Fig. 11. The integrated reflecting power normalized by the 

kinematical reflecting power as a function of the crystal 
curvature for the (115) plane and the 1 mm thick crystal in 
the Bragg condition. 
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Fig. 12. The integrated reflecting power normalized by the 
kinematical reflecting power as a function of the crystal 
curvature for the (115) plane and the 1 mm thick crystal in 
the Laue condition. 

From the observation of the different figures, it 
appears that in spite of a lack of complete agreement 
between theoretical and experimental values, similar 
behaviour is observed for all the diffracting planes 
utilized, as expected on the basis of the theoretical 
considerations. In particular, with the exception of 
Fig. 11 a satisfactory quantitative agreement exists in 
the range O< c<  1, which is the most interesting for 
application in the field of neutron monochromatiza- 
tion. On the other hand, the data of Fig. 11 correspond 
to a very small curvature for which the intrinsic im- 
perfection of our particular crystals become more 

important than those corresponding to the curvature 
itself, as was seen in Antonini et al. (1972). Concerning 
the transmission Laue case, it can be seen that the 
layer model introduced for c--1 is still valid, which 
explains the similar behaviour observed for Laue and 
Bragg cases. 

Conclusion 

The ratio of neutron reflectivity between plane and 
curved silicon crystals was measured as a function 
of the neutron wavelength using different reflecting 
planes on crystals of different thicknesses and cur- 
vatures in both Bragg and Laue conditions. This work 
has been related to the theoretical results which were 
obtained recently by applying the dynamical theory of 
neutron diffraction to ideally curved crystals. Owing 
to the fact that in the experiments the neutron wave- 
length was changed, the interpretation of the experi- 
mental results was not straightforward and needed 
an elaboration of the rough data on the basis of several 
physical considerations. As a result of this elaboration, 
all the data were arranged in a quite general form, 
which allows a satisfactory explanation of the results. 
Moreover, the measurements performed are of partic- 
ular interest in the design of neutron monochro- 
mators and composite focusing systems. 
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